961 research outputs found

    Broadening effects due to alloy scattering in Quantum Cascade Lasers

    Full text link
    We report on calculations of broadening effects in QCL due to alloy scattering. The output of numerical calculations of alloy broadened Landau levels compare favorably with calculations performed at the self-consistent Born approximation. Results for Landau level width and optical absorption are presented. A disorder activated forbidden transition becomes significant in the vicinity of crossings of Landau levels which belong to different subbands. A study of the time dependent survival probability in the lowest Landau level of the excited subband is performed. It is shown that at resonance the population relaxation occurs in a subpicosecond scale.Comment: 7 pages, 8 figure

    Poisson algebra of 2d dimensionally reduced gravity

    Get PDF
    Using a Lax pair based on twisted affine sl(2,R)sl(2,R) Kac-Moody and Virasoro algebras, we deduce a r-matrix formulation of two dimensional reduced vacuum Einstein's equations. Whereas the fundamental Poisson brackets are non-ultralocal, they lead to pure c-number modified Yang-Baxter equations. We also describe how to obtain classical observables by imposing reasonable boundaries conditions.Comment: 16 pages, minor corrections. To appear in JHE

    Characterizing the many-body localization transition through the entanglement spectrum

    Full text link
    We numerically explore the many body localization (MBL) transition through the lens of the {\it entanglement spectrum}. While a direct transition from localization to thermalization is believed to obtain in the thermodynamic limit (the exact details of which remain an open problem), in finite system sizes there exists an intermediate `quantum critical' regime. Previous numerical investigations have explored the crossover from thermalization to criticality, and have used this to place a numerical {\it lower} bound on the critical disorder strength for MBL. A careful analysis of the {\it high energy} part of the entanglement spectrum (which contains universal information about the critical point) allows us to make the first ever observation in exact numerics of the crossover from criticality to MBL and hence to place a numerical {\it upper bound} on the critical disorder strength for MBL.Comment: 4 pages+appendi

    Many body localization and thermalization: insights from the entanglement spectrum

    Full text link
    We study the entanglement spectrum in the many body localizing and thermalizing phases of one and two dimensional Hamiltonian systems, and periodically driven `Floquet' systems. We focus on the level statistics of the entanglement spectrum as obtained through numerical diagonalization, finding structure beyond that revealed by more limited measures such as entanglement entropy. In the thermalizing phase the entanglement spectrum obeys level statistics governed by an appropriate random matrix ensemble. For Hamiltonian systems this can be viewed as evidence in favor of a strong version of the eigenstate thermalization hypothesis (ETH). Similar results are also obtained for Floquet systems, where they constitute a result `beyond ETH', and show that the corrections to ETH governing the Floquet entanglement spectrum have statistical properties governed by a random matrix ensemble. The particular random matrix ensemble governing the Floquet entanglement spectrum depends on the symmetries of the Floquet drive, and therefore can depend on the choice of origin of time. In the many body localized phase the entanglement spectrum is also found to show level repulsion, following a semi-Poisson distribution (in contrast to the energy spectrum, which follows a Poisson distribution). This semi-Poisson distribution is found to come mainly from states at high entanglement energies. The observed level repulsion only occurs for interacting localized phases. We also demonstrate that equivalent results can be obtained by calculating with a single typical eigenstate, or by averaging over a microcanonical energy window - a surprising result in the localized phase. This discovery of new structure in the pattern of entanglement of localized and thermalizing phases may open up new lines of attack on many body localization, thermalization, and the localization transition.Comment: 17 pages, 20 figure

    Lifetime of Gapped Excitations in a Collinear Quantum Antiferromagnet

    Full text link
    We demonstrate that local modulations of magnetic couplings have a profound effect on the temperature dependence of the relaxation rate of optical magnons in a wide class of antiferromagnets in which gapped excitations coexist with acoustic spin waves. In a two-dimensional collinear antiferromagnet with an easy-plane anisotropy, the disorder-induced relaxation rate of the gapped mode, Gamma_imp=Gamma_0+A(TlnT)^2, greatly exceeds the magnon-magnon damping, Gamma_m-m=BT^5, negligible at low temperatures. We measure the lifetime of gapped magnons in a prototype XY antiferromagnet BaNi2(PO4)2 using a high-resolution neutron-resonance spin-echo technique and find experimental data in close accord with the theoretical prediction. Similarly strong effects of disorder in the three-dimensional case and in noncollinear antiferromagnets are discussed.Comment: 4.5 pages + 2.5 pages supplementary material, published versio

    Emergent particle-hole symmetry in spinful bosonic quantum Hall systems

    Full text link
    When a fermionic quantum Hall system is projected into the lowest Landau level, there is an exact particle-hole symmetry between filling fractions ν\nu and 1ν1-\nu. We investigate whether a similar symmetry can emerge in bosonic quantum Hall states, where it would connect states at filling fractions ν\nu and 2ν2-\nu. We begin by showing that the particle-hole conjugate to a composite fermion `Jain state' is another Jain state, obtained by reverse flux attachment. We show how information such as the shift and the edge theory can be obtained for states which are particle-hole conjugates. Using the techniques of exact diagonalization and infinite density matrix renormalization group, we study a system of two-component (i.e., spinful) bosons, interacting via a δ\delta-function potential. We first obtain real-space entanglement spectra for the bosonic integer quantum Hall effect at ν=2\nu=2, which plays the role of a filled Landau level for the bosonic system. We then show that at ν=4/3\nu=4/3 the system is described by a Jain state which is the particle-hole conjugate of the Halperin (221) state at ν=2/3\nu=2/3. We show a similar relationship between non-singlet states at ν=1/2\nu=1/2 and ν=3/2\nu=3/2. We also study the case of ν=1\nu=1, providing unambiguous evidence that the ground state is a composite Fermi liquid. Taken together our results demonstrate that there is indeed an emergent particle-hole symmetry in bosonic quantum Hall systems.Comment: 10 pages, 8 figures, 4 appendice

    Composite-fermionization of bosons in rapidly rotating atomic traps

    Full text link
    The non-perturbative effect of interaction can sometimes make interacting bosons behave as though they were free fermions. The system of neutral bosons in a rapidly rotating atomic trap is equivalent to charged bosons coupled to a magnetic field, which has opened up the possibility of fractional quantum Hall effect for bosons interacting with a short range interaction. Motivated by the composite fermion theory of the fractional Hall effect of electrons, we test the idea that the interacting bosons map into non-interacting spinless fermions carrying one vortex each, by comparing wave functions incorporating this physics with exact wave functions available for systems containing up to 12 bosons. We study here the analogy between interacting bosons at filling factors ν=n/(n+1)\nu=n/(n+1) with non-interacting fermions at ν=n\nu^*=n for the ground state as well as the low-energy excited states and find that it provides a good account of the behavior for small nn, but interactions between fermions become increasingly important with nn. At ν=1\nu=1, which is obtained in the limit nn\rightarrow \infty, the fermionization appears to overcompensate for the repulsive interaction between bosons, producing an {\em attractive} interactions between fermions, as evidenced by a pairing of fermions here.Comment: 8 pages, 3 figures. Submitted to Phys. Rev.

    Tunneling in Fractional Quantum Hall line junctions

    Get PDF
    We study the tunneling current between two counterpropagating edge modes described by chiral Luttinger liquids when the tunneling takes place along an extended region. We compute this current perturbatively by using a tunnel Hamiltonian. Our results apply to the case of a pair of different two-dimensional electron gases in the fractional quantum Hall regime separated by a barrier, e. g. electron tunneling. We also discuss the case of strong interactions between the edges, leading to nonuniversal exponents even in the case of integer quantum Hall edges. In addition to the expected nonlinearities due to the Luttinger properties of the edges, there are additional interference patterns due to the finite length of the barrier.Comment: 7 pages, RevTex, 12 figs, submitted to Phys Rev
    corecore